Metamath Proof Explorer


Theorem uhgr3cyclex

Description: If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017) (Revised by AV, 12-Feb-2021)

Ref Expression
Hypotheses uhgr3cyclex.v V=VtxG
uhgr3cyclex.e E=EdgG
Assertion uhgr3cyclex GUHGraphAVBVCVABACBCABEBCECAEfpfCyclesGpf=3p0=A

Proof

Step Hyp Ref Expression
1 uhgr3cyclex.v V=VtxG
2 uhgr3cyclex.e E=EdgG
3 2 eleq2i ABEABEdgG
4 eqid iEdgG=iEdgG
5 4 uhgredgiedgb GUHGraphABEdgGidomiEdgGAB=iEdgGi
6 3 5 bitrid GUHGraphABEidomiEdgGAB=iEdgGi
7 2 eleq2i BCEBCEdgG
8 4 uhgredgiedgb GUHGraphBCEdgGjdomiEdgGBC=iEdgGj
9 7 8 bitrid GUHGraphBCEjdomiEdgGBC=iEdgGj
10 2 eleq2i CAECAEdgG
11 4 uhgredgiedgb GUHGraphCAEdgGkdomiEdgGCA=iEdgGk
12 10 11 bitrid GUHGraphCAEkdomiEdgGCA=iEdgGk
13 6 9 12 3anbi123d GUHGraphABEBCECAEidomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGk
14 13 adantr GUHGraphAVBVCVABACBCABEBCECAEidomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGk
15 eqid ⟨“ABCA”⟩=⟨“ABCA”⟩
16 eqid ⟨“ijk”⟩=⟨“ijk”⟩
17 3simpa AVBVCVAVBV
18 pm3.22 AVCVCVAV
19 18 3adant2 AVBVCVCVAV
20 17 19 jca AVBVCVAVBVCVAV
21 20 adantr AVBVCVABACBCAVBVCVAV
22 21 ad2antlr GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiAVBVCVAV
23 3simpa ABACBCABAC
24 necom ABBA
25 24 biimpi ABBA
26 25 anim1ci ABBCBCBA
27 26 3adant2 ABACBCBCBA
28 necom ACCA
29 28 biimpi ACCA
30 29 3ad2ant2 ABACBCCA
31 23 27 30 3jca ABACBCABACBCBACA
32 31 adantl AVBVCVABACBCABACBCBACA
33 32 ad2antlr GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiABACBCBACA
34 eqimss AB=iEdgGiABiEdgGi
35 34 adantl idomiEdgGAB=iEdgGiABiEdgGi
36 35 3ad2ant3 jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiABiEdgGi
37 eqimss BC=iEdgGjBCiEdgGj
38 37 adantl jdomiEdgGBC=iEdgGjBCiEdgGj
39 38 3ad2ant1 jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiBCiEdgGj
40 eqimss CA=iEdgGkCAiEdgGk
41 40 adantl kdomiEdgGCA=iEdgGkCAiEdgGk
42 41 3ad2ant2 jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiCAiEdgGk
43 36 39 42 3jca jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiABiEdgGiBCiEdgGjCAiEdgGk
44 43 adantl GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiABiEdgGiBCiEdgGjCAiEdgGk
45 simp3 AVBVCVCV
46 simp1 AVBVCVAV
47 45 46 jca AVBVCVCVAV
48 47 30 anim12i AVBVCVABACBCCVAVCA
49 48 adantl GUHGraphAVBVCVABACBCCVAVCA
50 pm3.22 jdomiEdgGBC=iEdgGjidomiEdgGAB=iEdgGiidomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGj
51 50 3adant2 jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiidomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGj
52 1 2 4 uhgr3cyclexlem CVAVCAidomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGjij
53 49 51 52 syl2an GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiij
54 3simpc AVBVCVBVCV
55 simp3 ABACBCBC
56 54 55 anim12i AVBVCVABACBCBVCVBC
57 56 adantl GUHGraphAVBVCVABACBCBVCVBC
58 3simpc jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGikdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGi
59 1 2 4 uhgr3cyclexlem BVCVBCkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiki
60 59 necomd BVCVBCkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiik
61 57 58 60 syl2an GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiik
62 1 2 4 uhgr3cyclexlem AVBVABjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkjk
63 62 exp31 AVBVABjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkjk
64 63 3adant3 AVBVCVABjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkjk
65 64 com12 ABAVBVCVjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkjk
66 65 3ad2ant1 ABACBCAVBVCVjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkjk
67 66 impcom AVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkjk
68 67 adantl GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkjk
69 68 com12 jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkGUHGraphAVBVCVABACBCjk
70 69 3adant3 jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiGUHGraphAVBVCVABACBCjk
71 70 impcom GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGijk
72 53 61 71 3jca GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiijikjk
73 eqidd GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiA=A
74 15 16 22 33 44 1 4 72 73 3cyclpd GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGi⟨“ijk”⟩CyclesG⟨“ABCA”⟩⟨“ijk”⟩=3⟨“ABCA”⟩0=A
75 s3cli ⟨“ijk”⟩WordV
76 75 elexi ⟨“ijk”⟩V
77 s4cli ⟨“ABCA”⟩WordV
78 77 elexi ⟨“ABCA”⟩V
79 breq12 f=⟨“ijk”⟩p=⟨“ABCA”⟩fCyclesGp⟨“ijk”⟩CyclesG⟨“ABCA”⟩
80 fveqeq2 f=⟨“ijk”⟩f=3⟨“ijk”⟩=3
81 80 adantr f=⟨“ijk”⟩p=⟨“ABCA”⟩f=3⟨“ijk”⟩=3
82 fveq1 p=⟨“ABCA”⟩p0=⟨“ABCA”⟩0
83 82 eqeq1d p=⟨“ABCA”⟩p0=A⟨“ABCA”⟩0=A
84 83 adantl f=⟨“ijk”⟩p=⟨“ABCA”⟩p0=A⟨“ABCA”⟩0=A
85 79 81 84 3anbi123d f=⟨“ijk”⟩p=⟨“ABCA”⟩fCyclesGpf=3p0=A⟨“ijk”⟩CyclesG⟨“ABCA”⟩⟨“ijk”⟩=3⟨“ABCA”⟩0=A
86 76 78 85 spc2ev ⟨“ijk”⟩CyclesG⟨“ABCA”⟩⟨“ijk”⟩=3⟨“ABCA”⟩0=AfpfCyclesGpf=3p0=A
87 74 86 syl GUHGraphAVBVCVABACBCjdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGifpfCyclesGpf=3p0=A
88 87 expcom jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
89 88 3exp jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
90 89 rexlimiva jdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkidomiEdgGAB=iEdgGiGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
91 90 com12 kdomiEdgGCA=iEdgGkjdomiEdgGBC=iEdgGjidomiEdgGAB=iEdgGiGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
92 91 rexlimiva kdomiEdgGCA=iEdgGkjdomiEdgGBC=iEdgGjidomiEdgGAB=iEdgGiGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
93 92 com13 idomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
94 93 rexlimiva idomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
95 94 3imp idomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkGUHGraphAVBVCVABACBCfpfCyclesGpf=3p0=A
96 95 com12 GUHGraphAVBVCVABACBCidomiEdgGAB=iEdgGijdomiEdgGBC=iEdgGjkdomiEdgGCA=iEdgGkfpfCyclesGpf=3p0=A
97 14 96 sylbid GUHGraphAVBVCVABACBCABEBCECAEfpfCyclesGpf=3p0=A
98 97 3impia GUHGraphAVBVCVABACBCABEBCECAEfpfCyclesGpf=3p0=A