Description: If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017) (Revised by AV, 12-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgr3cyclex.v | |
|
uhgr3cyclex.e | |
||
Assertion | umgr3cyclex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgr3cyclex.v | |
|
2 | uhgr3cyclex.e | |
|
3 | umgruhgr | |
|
4 | 3 | 3ad2ant1 | |
5 | simp2 | |
|
6 | 2 | umgredgne | |
7 | 6 | 3ad2antr1 | |
8 | prcom | |
|
9 | 8 | eleq1i | |
10 | 9 | biimpi | |
11 | 10 | 3ad2ant3 | |
12 | 2 | umgredgne | |
13 | 11 12 | sylan2 | |
14 | simp2 | |
|
15 | 2 | umgredgne | |
16 | 14 15 | sylan2 | |
17 | 7 13 16 | 3jca | |
18 | 17 | 3adant2 | |
19 | simp3 | |
|
20 | 1 2 | uhgr3cyclex | |
21 | 4 5 18 19 20 | syl121anc | |