Metamath Proof Explorer


Theorem umgr3cyclex

Description: If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017) (Revised by AV, 12-Feb-2021)

Ref Expression
Hypotheses uhgr3cyclex.v V=VtxG
uhgr3cyclex.e E=EdgG
Assertion umgr3cyclex GUMGraphAVBVCVABEBCECAEfpfCyclesGpf=3p0=A

Proof

Step Hyp Ref Expression
1 uhgr3cyclex.v V=VtxG
2 uhgr3cyclex.e E=EdgG
3 umgruhgr GUMGraphGUHGraph
4 3 3ad2ant1 GUMGraphAVBVCVABEBCECAEGUHGraph
5 simp2 GUMGraphAVBVCVABEBCECAEAVBVCV
6 2 umgredgne GUMGraphABEAB
7 6 3ad2antr1 GUMGraphABEBCECAEAB
8 prcom CA=AC
9 8 eleq1i CAEACE
10 9 biimpi CAEACE
11 10 3ad2ant3 ABEBCECAEACE
12 2 umgredgne GUMGraphACEAC
13 11 12 sylan2 GUMGraphABEBCECAEAC
14 simp2 ABEBCECAEBCE
15 2 umgredgne GUMGraphBCEBC
16 14 15 sylan2 GUMGraphABEBCECAEBC
17 7 13 16 3jca GUMGraphABEBCECAEABACBC
18 17 3adant2 GUMGraphAVBVCVABEBCECAEABACBC
19 simp3 GUMGraphAVBVCVABEBCECAEABEBCECAE
20 1 2 uhgr3cyclex GUHGraphAVBVCVABACBCABEBCECAEfpfCyclesGpf=3p0=A
21 4 5 18 19 20 syl121anc GUMGraphAVBVCVABEBCECAEfpfCyclesGpf=3p0=A