| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgr3cyclex.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uhgr3cyclex.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
umgruhgr |
⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐺 ∈ UHGraph ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 6 |
2
|
umgredgne |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → 𝐴 ≠ 𝐵 ) |
| 7 |
6
|
3ad2antr1 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐴 ≠ 𝐵 ) |
| 8 |
|
prcom |
⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } |
| 9 |
8
|
eleq1i |
⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 10 |
9
|
biimpi |
⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 → { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → { 𝐴 , 𝐶 } ∈ 𝐸 ) |
| 12 |
2
|
umgredgne |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐴 , 𝐶 } ∈ 𝐸 ) → 𝐴 ≠ 𝐶 ) |
| 13 |
11 12
|
sylan2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐴 ≠ 𝐶 ) |
| 14 |
|
simp2 |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → { 𝐵 , 𝐶 } ∈ 𝐸 ) |
| 15 |
2
|
umgredgne |
⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → 𝐵 ≠ 𝐶 ) |
| 16 |
14 15
|
sylan2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → 𝐵 ≠ 𝐶 ) |
| 17 |
7 13 16
|
3jca |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
| 18 |
17
|
3adant2 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
| 19 |
|
simp3 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
| 20 |
1 2
|
uhgr3cyclex |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
| 21 |
4 5 18 19 20
|
syl121anc |
⊢ ( ( 𝐺 ∈ UMGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |