| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgr3cyclex.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
uhgr3cyclex.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
2
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 5 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 6 |
3 5
|
bitrid |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 7 |
2
|
eleq2i |
⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) |
| 8 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 9 |
7 8
|
bitrid |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
| 10 |
2
|
eleq2i |
⊢ ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
| 11 |
4
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 12 |
10 11
|
bitrid |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐶 , 𝐴 } ∈ 𝐸 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 13 |
6 9 12
|
3anbi123d |
⊢ ( 𝐺 ∈ UHGraph → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 15 |
|
eqid |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 |
| 16 |
|
eqid |
⊢ 〈“ 𝑖 𝑗 𝑘 ”〉 = 〈“ 𝑖 𝑗 𝑘 ”〉 |
| 17 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
| 18 |
|
pm3.22 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
| 19 |
18
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
| 20 |
17 19
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) ) |
| 23 |
|
3simpa |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ) |
| 24 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
| 25 |
24
|
biimpi |
⊢ ( 𝐴 ≠ 𝐵 → 𝐵 ≠ 𝐴 ) |
| 26 |
25
|
anim1ci |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ) |
| 27 |
26
|
3adant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ) |
| 28 |
|
necom |
⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) |
| 29 |
28
|
biimpi |
⊢ ( 𝐴 ≠ 𝐶 → 𝐶 ≠ 𝐴 ) |
| 30 |
29
|
3ad2ant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ≠ 𝐴 ) |
| 31 |
23 27 30
|
3jca |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ∧ 𝐶 ≠ 𝐴 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ∧ 𝐶 ≠ 𝐴 ) ) |
| 33 |
32
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐴 ) ∧ 𝐶 ≠ 𝐴 ) ) |
| 34 |
|
eqimss |
⊢ ( { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 36 |
35
|
3ad2ant3 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
| 37 |
|
eqimss |
⊢ ( { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 39 |
38
|
3ad2ant1 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
| 40 |
|
eqimss |
⊢ ( { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) |
| 43 |
36 39 42
|
3jca |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ { 𝐶 , 𝐴 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) |
| 45 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
| 46 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
| 47 |
45 46
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) |
| 48 |
47 30
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐶 ≠ 𝐴 ) ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐶 ≠ 𝐴 ) ) |
| 50 |
|
pm3.22 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 51 |
50
|
3adant2 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) |
| 52 |
1 2 4
|
uhgr3cyclexlem |
⊢ ( ( ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ 𝐶 ≠ 𝐴 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) ) → 𝑖 ≠ 𝑗 ) |
| 53 |
49 51 52
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑖 ≠ 𝑗 ) |
| 54 |
|
3simpc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 55 |
|
simp3 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
| 56 |
54 55
|
anim12i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ) |
| 58 |
|
3simpc |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
| 59 |
1 2 4
|
uhgr3cyclexlem |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑘 ≠ 𝑖 ) |
| 60 |
59
|
necomd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑖 ≠ 𝑘 ) |
| 61 |
57 58 60
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑖 ≠ 𝑘 ) |
| 62 |
1 2 4
|
uhgr3cyclexlem |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) ) → 𝑗 ≠ 𝑘 ) |
| 63 |
62
|
exp31 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
| 64 |
63
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
| 65 |
64
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
| 66 |
65
|
3ad2ant1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) ) |
| 67 |
66
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
| 69 |
68
|
com12 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
| 70 |
69
|
3adant3 |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → 𝑗 ≠ 𝑘 ) ) |
| 71 |
70
|
impcom |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑗 ≠ 𝑘 ) |
| 72 |
53 61 71
|
3jca |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 𝑖 ≠ 𝑗 ∧ 𝑖 ≠ 𝑘 ∧ 𝑗 ≠ 𝑘 ) ) |
| 73 |
|
eqidd |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝐴 = 𝐴 ) |
| 74 |
15 16 22 33 44 1 4 72 73
|
3cyclpd |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ∧ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
| 75 |
|
s3cli |
⊢ 〈“ 𝑖 𝑗 𝑘 ”〉 ∈ Word V |
| 76 |
75
|
elexi |
⊢ 〈“ 𝑖 𝑗 𝑘 ”〉 ∈ V |
| 77 |
|
s4cli |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∈ Word V |
| 78 |
77
|
elexi |
⊢ 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∈ V |
| 79 |
|
breq12 |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ↔ 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) ) |
| 80 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 → ( ( ♯ ‘ 𝑓 ) = 3 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( ( ♯ ‘ 𝑓 ) = 3 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ) ) |
| 82 |
|
fveq1 |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 → ( 𝑝 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) ) |
| 83 |
82
|
eqeq1d |
⊢ ( 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 → ( ( 𝑝 ‘ 0 ) = 𝐴 ↔ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( ( 𝑝 ‘ 0 ) = 𝐴 ↔ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) |
| 85 |
79 81 84
|
3anbi123d |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 𝑘 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ) → ( ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ↔ ( 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ∧ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) ) ) |
| 86 |
76 78 85
|
spc2ev |
⊢ ( ( 〈“ 𝑖 𝑗 𝑘 ”〉 ( Cycles ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 𝑘 ”〉 ) = 3 ∧ ( 〈“ 𝐴 𝐵 𝐶 𝐴 ”〉 ‘ 0 ) = 𝐴 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
| 87 |
74 86
|
syl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) ∧ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |
| 88 |
87
|
expcom |
⊢ ( ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ∧ ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
| 89 |
88
|
3exp |
⊢ ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
| 90 |
89
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
| 91 |
90
|
com12 |
⊢ ( ( 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
| 92 |
91
|
rexlimiva |
⊢ ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
| 93 |
92
|
com13 |
⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
| 94 |
93
|
rexlimiva |
⊢ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) → ( ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) ) ) |
| 95 |
94
|
3imp |
⊢ ( ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
| 96 |
95
|
com12 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐴 , 𝐵 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐵 , 𝐶 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ∧ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) { 𝐶 , 𝐴 } = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
| 97 |
14 96
|
sylbid |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) ) |
| 98 |
97
|
3impia |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( Cycles ‘ 𝐺 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 3 ∧ ( 𝑝 ‘ 0 ) = 𝐴 ) ) |