Metamath Proof Explorer


Theorem uhgredgiedgb

Description: In a hypergraph, a set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020)

Ref Expression
Hypothesis uhgredgiedgb.i I=iEdgG
Assertion uhgredgiedgb GUHGraphEEdgGxdomIE=Ix

Proof

Step Hyp Ref Expression
1 uhgredgiedgb.i I=iEdgG
2 1 uhgrfun GUHGraphFunI
3 1 edgiedgb FunIEEdgGxdomIE=Ix
4 2 3 syl GUHGraphEEdgGxdomIE=Ix