Metamath Proof Explorer


Theorem umgr2edg

Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 11-Feb-2021)

Ref Expression
Hypotheses usgrf1oedg.i I=iEdgG
usgrf1oedg.e E=EdgG
Assertion umgr2edg GUMGraphABNAEBNExdomIydomIxyNIxNIy

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i I=iEdgG
2 usgrf1oedg.e E=EdgG
3 umgruhgr GUMGraphGUHGraph
4 3 anim1i GUMGraphABGUHGraphAB
5 4 adantr GUMGraphABNAEBNEGUHGraphAB
6 eqid VtxG=VtxG
7 6 2 umgrpredgv GUMGraphNAENVtxGAVtxG
8 7 ad2ant2r GUMGraphABNAEBNENVtxGAVtxG
9 8 simprd GUMGraphABNAEBNEAVtxG
10 6 2 umgrpredgv GUMGraphBNEBVtxGNVtxG
11 10 ad2ant2rl GUMGraphABNAEBNEBVtxGNVtxG
12 11 simpld GUMGraphABNAEBNEBVtxG
13 8 simpld GUMGraphABNAEBNENVtxG
14 simpr GUMGraphABNAEBNENAEBNE
15 1 2 6 uhgr2edg GUHGraphABAVtxGBVtxGNVtxGNAEBNExdomIydomIxyNIxNIy
16 5 9 12 13 14 15 syl131anc GUMGraphABNAEBNExdomIydomIxyNIxNIy