Metamath Proof Explorer


Theorem uhgr2edg

Description: If a vertex is adjacent to two different vertices in a hypergraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 11-Feb-2021)

Ref Expression
Hypotheses usgrf1oedg.i I = iEdg G
usgrf1oedg.e E = Edg G
uhgr2edg.v V = Vtx G
Assertion uhgr2edg G UHGraph A B A V B V N V N A E B N E x dom I y dom I x y N I x N I y

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i I = iEdg G
2 usgrf1oedg.e E = Edg G
3 uhgr2edg.v V = Vtx G
4 simp1l G UHGraph A B A V B V N V N A E B N E G UHGraph
5 simp1r G UHGraph A B A V B V N V N A E B N E A B
6 simp23 G UHGraph A B A V B V N V N A E B N E N V
7 simp21 G UHGraph A B A V B V N V N A E B N E A V
8 3simpc A V B V N V B V N V
9 8 3ad2ant2 G UHGraph A B A V B V N V N A E B N E B V N V
10 6 7 9 jca31 G UHGraph A B A V B V N V N A E B N E N V A V B V N V
11 4 5 10 jca31 G UHGraph A B A V B V N V N A E B N E G UHGraph A B N V A V B V N V
12 simp3 G UHGraph A B A V B V N V N A E B N E N A E B N E
13 2 a1i G UHGraph E = Edg G
14 edgval Edg G = ran iEdg G
15 14 a1i G UHGraph Edg G = ran iEdg G
16 1 eqcomi iEdg G = I
17 16 a1i G UHGraph iEdg G = I
18 17 rneqd G UHGraph ran iEdg G = ran I
19 13 15 18 3eqtrd G UHGraph E = ran I
20 19 eleq2d G UHGraph N A E N A ran I
21 19 eleq2d G UHGraph B N E B N ran I
22 20 21 anbi12d G UHGraph N A E B N E N A ran I B N ran I
23 1 uhgrfun G UHGraph Fun I
24 23 funfnd G UHGraph I Fn dom I
25 fvelrnb I Fn dom I N A ran I x dom I I x = N A
26 fvelrnb I Fn dom I B N ran I y dom I I y = B N
27 25 26 anbi12d I Fn dom I N A ran I B N ran I x dom I I x = N A y dom I I y = B N
28 24 27 syl G UHGraph N A ran I B N ran I x dom I I x = N A y dom I I y = B N
29 22 28 bitrd G UHGraph N A E B N E x dom I I x = N A y dom I I y = B N
30 29 ad2antrr G UHGraph A B N V A V B V N V N A E B N E x dom I I x = N A y dom I I y = B N
31 reeanv x dom I y dom I I x = N A I y = B N x dom I I x = N A y dom I I y = B N
32 fveqeq2 x = y I x = N A I y = N A
33 32 anbi1d x = y I x = N A I y = B N I y = N A I y = B N
34 eqtr2 I y = N A I y = B N N A = B N
35 prcom B N = N B
36 35 eqeq2i N A = B N N A = N B
37 preq12bg N V A V N V B V N A = N B N = N A = B N = B A = N
38 37 ancom2s N V A V B V N V N A = N B N = N A = B N = B A = N
39 eqneqall A = B A B x y
40 39 adantl N = N A = B A B x y
41 eqtr A = N N = B A = B
42 41 ancoms N = B A = N A = B
43 42 39 syl N = B A = N A B x y
44 40 43 jaoi N = N A = B N = B A = N A B x y
45 44 adantld N = N A = B N = B A = N G UHGraph A B x y
46 38 45 syl6bi N V A V B V N V N A = N B G UHGraph A B x y
47 46 com3l N A = N B G UHGraph A B N V A V B V N V x y
48 47 impd N A = N B G UHGraph A B N V A V B V N V x y
49 36 48 sylbi N A = B N G UHGraph A B N V A V B V N V x y
50 34 49 syl I y = N A I y = B N G UHGraph A B N V A V B V N V x y
51 33 50 syl6bi x = y I x = N A I y = B N G UHGraph A B N V A V B V N V x y
52 51 impcomd x = y G UHGraph A B N V A V B V N V I x = N A I y = B N x y
53 ax-1 x y G UHGraph A B N V A V B V N V I x = N A I y = B N x y
54 52 53 pm2.61ine G UHGraph A B N V A V B V N V I x = N A I y = B N x y
55 prid1g N V N N A
56 55 ad2antrr N V A V B V N V N N A
57 56 adantl G UHGraph A B N V A V B V N V N N A
58 eleq2 I x = N A N I x N N A
59 57 58 syl5ibr I x = N A G UHGraph A B N V A V B V N V N I x
60 59 adantr I x = N A I y = B N G UHGraph A B N V A V B V N V N I x
61 60 impcom G UHGraph A B N V A V B V N V I x = N A I y = B N N I x
62 prid2g N V N B N
63 62 ad2antrr N V A V B V N V N B N
64 63 adantl G UHGraph A B N V A V B V N V N B N
65 eleq2 I y = B N N I y N B N
66 64 65 syl5ibr I y = B N G UHGraph A B N V A V B V N V N I y
67 66 adantl I x = N A I y = B N G UHGraph A B N V A V B V N V N I y
68 67 impcom G UHGraph A B N V A V B V N V I x = N A I y = B N N I y
69 54 61 68 3jca G UHGraph A B N V A V B V N V I x = N A I y = B N x y N I x N I y
70 69 ex G UHGraph A B N V A V B V N V I x = N A I y = B N x y N I x N I y
71 70 reximdv G UHGraph A B N V A V B V N V y dom I I x = N A I y = B N y dom I x y N I x N I y
72 71 reximdv G UHGraph A B N V A V B V N V x dom I y dom I I x = N A I y = B N x dom I y dom I x y N I x N I y
73 31 72 syl5bir G UHGraph A B N V A V B V N V x dom I I x = N A y dom I I y = B N x dom I y dom I x y N I x N I y
74 30 73 sylbid G UHGraph A B N V A V B V N V N A E B N E x dom I y dom I x y N I x N I y
75 11 12 74 sylc G UHGraph A B A V B V N V N A E B N E x dom I y dom I x y N I x N I y