| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrf1oedg.i |
|
| 2 |
|
usgrf1oedg.e |
|
| 3 |
|
uhgr2edg.v |
|
| 4 |
|
simp1l |
|
| 5 |
|
simp1r |
|
| 6 |
|
simp23 |
|
| 7 |
|
simp21 |
|
| 8 |
|
3simpc |
|
| 9 |
8
|
3ad2ant2 |
|
| 10 |
6 7 9
|
jca31 |
|
| 11 |
4 5 10
|
jca31 |
|
| 12 |
|
simp3 |
|
| 13 |
2
|
a1i |
|
| 14 |
|
edgval |
|
| 15 |
14
|
a1i |
|
| 16 |
1
|
eqcomi |
|
| 17 |
16
|
a1i |
|
| 18 |
17
|
rneqd |
|
| 19 |
13 15 18
|
3eqtrd |
|
| 20 |
19
|
eleq2d |
|
| 21 |
19
|
eleq2d |
|
| 22 |
20 21
|
anbi12d |
|
| 23 |
1
|
uhgrfun |
|
| 24 |
23
|
funfnd |
|
| 25 |
|
fvelrnb |
|
| 26 |
|
fvelrnb |
|
| 27 |
25 26
|
anbi12d |
|
| 28 |
24 27
|
syl |
|
| 29 |
22 28
|
bitrd |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
|
reeanv |
|
| 32 |
|
fveqeq2 |
|
| 33 |
32
|
anbi1d |
|
| 34 |
|
eqtr2 |
|
| 35 |
|
prcom |
|
| 36 |
35
|
eqeq2i |
|
| 37 |
|
preq12bg |
|
| 38 |
37
|
ancom2s |
|
| 39 |
|
eqneqall |
|
| 40 |
39
|
adantl |
|
| 41 |
|
eqtr |
|
| 42 |
41
|
ancoms |
|
| 43 |
42 39
|
syl |
|
| 44 |
40 43
|
jaoi |
|
| 45 |
44
|
adantld |
|
| 46 |
38 45
|
biimtrdi |
|
| 47 |
46
|
com3l |
|
| 48 |
47
|
impd |
|
| 49 |
36 48
|
sylbi |
|
| 50 |
34 49
|
syl |
|
| 51 |
33 50
|
biimtrdi |
|
| 52 |
51
|
impcomd |
|
| 53 |
|
ax-1 |
|
| 54 |
52 53
|
pm2.61ine |
|
| 55 |
|
prid1g |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
56
|
adantl |
|
| 58 |
|
eleq2 |
|
| 59 |
57 58
|
imbitrrid |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
impcom |
|
| 62 |
|
prid2g |
|
| 63 |
62
|
ad2antrr |
|
| 64 |
63
|
adantl |
|
| 65 |
|
eleq2 |
|
| 66 |
64 65
|
imbitrrid |
|
| 67 |
66
|
adantl |
|
| 68 |
67
|
impcom |
|
| 69 |
54 61 68
|
3jca |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
reximdv |
|
| 72 |
71
|
reximdv |
|
| 73 |
31 72
|
biimtrrid |
|
| 74 |
30 73
|
sylbid |
|
| 75 |
11 12 74
|
sylc |
|