Metamath Proof Explorer


Theorem umgredgnlp

Description: An edge of a multigraph is not a loop. (Contributed by AV, 9-Jan-2020) (Revised by AV, 8-Jun-2021)

Ref Expression
Hypothesis umgredgnlp.e E=EdgG
Assertion umgredgnlp GUMGraphCE¬vC=v

Proof

Step Hyp Ref Expression
1 umgredgnlp.e E=EdgG
2 vex vV
3 hashsng vVv=1
4 1ne2 12
5 4 neii ¬1=2
6 eqeq1 v=1v=21=2
7 5 6 mtbiri v=1¬v=2
8 2 3 7 mp2b ¬v=2
9 fveqeq2 C=vC=2v=2
10 8 9 mtbiri C=v¬C=2
11 10 intnand C=v¬C𝒫VtxGC=2
12 1 eleq2i CECEdgG
13 edgumgr GUMGraphCEdgGC𝒫VtxGC=2
14 12 13 sylan2b GUMGraphCEC𝒫VtxGC=2
15 11 14 nsyl3 GUMGraphCE¬C=v
16 15 nexdv GUMGraphCE¬vC=v