Metamath Proof Explorer


Theorem unblem4

Description: Lemma for unbnn . The function F maps the set of natural numbers one-to-one to the set of unbounded natural numbers A . (Contributed by NM, 3-Dec-2003)

Ref Expression
Hypothesis unblem.2 F=recxVAsucxAω
Assertion unblem4 AωwωvAwvF:ω1-1A

Proof

Step Hyp Ref Expression
1 unblem.2 F=recxVAsucxAω
2 omsson ωOn
3 sstr AωωOnAOn
4 2 3 mpan2 AωAOn
5 4 adantr AωwωvAwvAOn
6 frfnom recxVAsucxAωFnω
7 1 fneq1i FFnωrecxVAsucxAωFnω
8 6 7 mpbir FFnω
9 1 unblem2 AωwωvAwvzωFzA
10 9 ralrimiv AωwωvAwvzωFzA
11 ffnfv F:ωAFFnωzωFzA
12 11 biimpri FFnωzωFzAF:ωA
13 8 10 12 sylancr AωwωvAwvF:ωA
14 1 unblem3 AωwωvAwvzωFzFsucz
15 14 ralrimiv AωwωvAwvzωFzFsucz
16 omsmo AOnF:ωAzωFzFsuczF:ω1-1A
17 5 13 15 16 syl21anc AωwωvAwvF:ω1-1A