| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unblem.2 |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
eleq1d |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
eleq1d |
|
| 8 |
|
omsson |
|
| 9 |
|
sstr |
|
| 10 |
8 9
|
mpan2 |
|
| 11 |
|
peano1 |
|
| 12 |
|
eleq1 |
|
| 13 |
12
|
rexbidv |
|
| 14 |
13
|
rspcv |
|
| 15 |
11 14
|
ax-mp |
|
| 16 |
|
df-rex |
|
| 17 |
15 16
|
sylib |
|
| 18 |
|
exsimpl |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
n0 |
|
| 21 |
19 20
|
sylibr |
|
| 22 |
|
onint |
|
| 23 |
10 21 22
|
syl2an |
|
| 24 |
1
|
fveq1i |
|
| 25 |
|
fr0g |
|
| 26 |
24 25
|
eqtr2id |
|
| 27 |
26
|
eleq1d |
|
| 28 |
27
|
ibi |
|
| 29 |
23 28
|
syl |
|
| 30 |
|
unblem1 |
|
| 31 |
|
suceq |
|
| 32 |
31
|
difeq2d |
|
| 33 |
32
|
inteqd |
|
| 34 |
|
suceq |
|
| 35 |
34
|
difeq2d |
|
| 36 |
35
|
inteqd |
|
| 37 |
1 33 36
|
frsucmpt2 |
|
| 38 |
37
|
eqcomd |
|
| 39 |
38
|
eleq1d |
|
| 40 |
39
|
ex |
|
| 41 |
40
|
ibd |
|
| 42 |
30 41
|
syl5 |
|
| 43 |
42
|
expd |
|
| 44 |
3 5 7 29 43
|
finds2 |
|
| 45 |
44
|
com12 |
|