| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unblem.2 |  |-  F = ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) | 
						
							| 2 |  | fveq2 |  |-  ( z = (/) -> ( F ` z ) = ( F ` (/) ) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( z = (/) -> ( ( F ` z ) e. A <-> ( F ` (/) ) e. A ) ) | 
						
							| 4 |  | fveq2 |  |-  ( z = u -> ( F ` z ) = ( F ` u ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( z = u -> ( ( F ` z ) e. A <-> ( F ` u ) e. A ) ) | 
						
							| 6 |  | fveq2 |  |-  ( z = suc u -> ( F ` z ) = ( F ` suc u ) ) | 
						
							| 7 | 6 | eleq1d |  |-  ( z = suc u -> ( ( F ` z ) e. A <-> ( F ` suc u ) e. A ) ) | 
						
							| 8 |  | omsson |  |-  _om C_ On | 
						
							| 9 |  | sstr |  |-  ( ( A C_ _om /\ _om C_ On ) -> A C_ On ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( A C_ _om -> A C_ On ) | 
						
							| 11 |  | peano1 |  |-  (/) e. _om | 
						
							| 12 |  | eleq1 |  |-  ( w = (/) -> ( w e. v <-> (/) e. v ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( w = (/) -> ( E. v e. A w e. v <-> E. v e. A (/) e. v ) ) | 
						
							| 14 | 13 | rspcv |  |-  ( (/) e. _om -> ( A. w e. _om E. v e. A w e. v -> E. v e. A (/) e. v ) ) | 
						
							| 15 | 11 14 | ax-mp |  |-  ( A. w e. _om E. v e. A w e. v -> E. v e. A (/) e. v ) | 
						
							| 16 |  | df-rex |  |-  ( E. v e. A (/) e. v <-> E. v ( v e. A /\ (/) e. v ) ) | 
						
							| 17 | 15 16 | sylib |  |-  ( A. w e. _om E. v e. A w e. v -> E. v ( v e. A /\ (/) e. v ) ) | 
						
							| 18 |  | exsimpl |  |-  ( E. v ( v e. A /\ (/) e. v ) -> E. v v e. A ) | 
						
							| 19 | 17 18 | syl |  |-  ( A. w e. _om E. v e. A w e. v -> E. v v e. A ) | 
						
							| 20 |  | n0 |  |-  ( A =/= (/) <-> E. v v e. A ) | 
						
							| 21 | 19 20 | sylibr |  |-  ( A. w e. _om E. v e. A w e. v -> A =/= (/) ) | 
						
							| 22 |  | onint |  |-  ( ( A C_ On /\ A =/= (/) ) -> |^| A e. A ) | 
						
							| 23 | 10 21 22 | syl2an |  |-  ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> |^| A e. A ) | 
						
							| 24 | 1 | fveq1i |  |-  ( F ` (/) ) = ( ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) ` (/) ) | 
						
							| 25 |  | fr0g |  |-  ( |^| A e. A -> ( ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) ` (/) ) = |^| A ) | 
						
							| 26 | 24 25 | eqtr2id |  |-  ( |^| A e. A -> |^| A = ( F ` (/) ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( |^| A e. A -> ( |^| A e. A <-> ( F ` (/) ) e. A ) ) | 
						
							| 28 | 27 | ibi |  |-  ( |^| A e. A -> ( F ` (/) ) e. A ) | 
						
							| 29 | 23 28 | syl |  |-  ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( F ` (/) ) e. A ) | 
						
							| 30 |  | unblem1 |  |-  ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ ( F ` u ) e. A ) -> |^| ( A \ suc ( F ` u ) ) e. A ) | 
						
							| 31 |  | suceq |  |-  ( y = x -> suc y = suc x ) | 
						
							| 32 | 31 | difeq2d |  |-  ( y = x -> ( A \ suc y ) = ( A \ suc x ) ) | 
						
							| 33 | 32 | inteqd |  |-  ( y = x -> |^| ( A \ suc y ) = |^| ( A \ suc x ) ) | 
						
							| 34 |  | suceq |  |-  ( y = ( F ` u ) -> suc y = suc ( F ` u ) ) | 
						
							| 35 | 34 | difeq2d |  |-  ( y = ( F ` u ) -> ( A \ suc y ) = ( A \ suc ( F ` u ) ) ) | 
						
							| 36 | 35 | inteqd |  |-  ( y = ( F ` u ) -> |^| ( A \ suc y ) = |^| ( A \ suc ( F ` u ) ) ) | 
						
							| 37 | 1 33 36 | frsucmpt2 |  |-  ( ( u e. _om /\ |^| ( A \ suc ( F ` u ) ) e. A ) -> ( F ` suc u ) = |^| ( A \ suc ( F ` u ) ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ( u e. _om /\ |^| ( A \ suc ( F ` u ) ) e. A ) -> |^| ( A \ suc ( F ` u ) ) = ( F ` suc u ) ) | 
						
							| 39 | 38 | eleq1d |  |-  ( ( u e. _om /\ |^| ( A \ suc ( F ` u ) ) e. A ) -> ( |^| ( A \ suc ( F ` u ) ) e. A <-> ( F ` suc u ) e. A ) ) | 
						
							| 40 | 39 | ex |  |-  ( u e. _om -> ( |^| ( A \ suc ( F ` u ) ) e. A -> ( |^| ( A \ suc ( F ` u ) ) e. A <-> ( F ` suc u ) e. A ) ) ) | 
						
							| 41 | 40 | ibd |  |-  ( u e. _om -> ( |^| ( A \ suc ( F ` u ) ) e. A -> ( F ` suc u ) e. A ) ) | 
						
							| 42 | 30 41 | syl5 |  |-  ( u e. _om -> ( ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) /\ ( F ` u ) e. A ) -> ( F ` suc u ) e. A ) ) | 
						
							| 43 | 42 | expd |  |-  ( u e. _om -> ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( ( F ` u ) e. A -> ( F ` suc u ) e. A ) ) ) | 
						
							| 44 | 3 5 7 29 43 | finds2 |  |-  ( z e. _om -> ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( F ` z ) e. A ) ) | 
						
							| 45 | 44 | com12 |  |-  ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. A ) ) |