Metamath Proof Explorer


Theorem unbnn2

Description: Version of unbnn that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion unbnn2 ωVAωxωyAxyAω

Proof

Step Hyp Ref Expression
1 peano2 zωsuczω
2 sseq1 x=suczxysuczy
3 2 rexbidv x=suczyAxyyAsuczy
4 3 rspcv suczωxωyAxyyAsuczy
5 sucssel zVsuczyzy
6 5 elv suczyzy
7 6 reximi yAsuczyyAzy
8 4 7 syl6com xωyAxysuczωyAzy
9 1 8 syl5 xωyAxyzωyAzy
10 9 ralrimiv xωyAxyzωyAzy
11 unbnn ωVAωzωyAzyAω
12 10 11 syl3an3 ωVAωxωyAxyAω