Metamath Proof Explorer


Theorem undif1

Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif ). Theorem 35 of Suppes p. 29. (Contributed by NM, 19-May-1998)

Ref Expression
Assertion undif1 ABB=AB

Proof

Step Hyp Ref Expression
1 undir AVBB=ABVBB
2 invdif AVB=AB
3 2 uneq1i AVBB=ABB
4 uncom VBB=BVB
5 unvdif BVB=V
6 4 5 eqtri VBB=V
7 6 ineq2i ABVBB=ABV
8 inv1 ABV=AB
9 7 8 eqtri ABVBB=AB
10 1 3 9 3eqtr3i ABB=AB