Metamath Proof Explorer


Theorem undisjrab

Description: Union of two disjoint restricted class abstractions; compare unrab . (Contributed by Steve Rodriguez, 28-Feb-2020)

Ref Expression
Assertion undisjrab xA|φxA|ψ=xA|φxA|ψ=xA|φψ

Proof

Step Hyp Ref Expression
1 rabeq0 xA|φψ=xA¬φψ
2 df-nan φψ¬φψ
3 nanorxor φψφψφψ
4 2 3 bitr3i ¬φψφψφψ
5 4 ralbii xA¬φψxAφψφψ
6 rabbi xAφψφψxA|φψ=xA|φψ
7 1 5 6 3bitri xA|φψ=xA|φψ=xA|φψ
8 inrab xA|φxA|ψ=xA|φψ
9 8 eqeq1i xA|φxA|ψ=xA|φψ=
10 unrab xA|φxA|ψ=xA|φψ
11 10 eqeq1i xA|φxA|ψ=xA|φψxA|φψ=xA|φψ
12 7 9 11 3bitr4i xA|φxA|ψ=xA|φxA|ψ=xA|φψ