Metamath Proof Explorer


Theorem unidif

Description: If the difference A \ B contains the largest members of A , then the union of the difference is the union of A . (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion unidif xAyABxyAB=A

Proof

Step Hyp Ref Expression
1 uniss2 xAyABxyAAB
2 difss ABA
3 2 unissi ABA
4 1 3 jctil xAyABxyABAAAB
5 eqss AB=AABAAAB
6 4 5 sylibr xAyABxyAB=A