Metamath Proof Explorer


Theorem unifndxntsetndx

Description: The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem . (Contributed by AV, 28-Oct-2024)

Ref Expression
Assertion unifndxntsetndx UnifSetndxTopSetndx

Proof

Step Hyp Ref Expression
1 9re 9
2 1nn 1
3 3nn0 30
4 9nn0 90
5 9lt10 9<10
6 2 3 4 5 declti 9<13
7 1 6 gtneii 139
8 unifndx UnifSetndx=13
9 tsetndx TopSetndx=9
10 8 9 neeq12i UnifSetndxTopSetndx139
11 7 10 mpbir UnifSetndxTopSetndx