Metamath Proof Explorer


Theorem unifndxntsetndx

Description: The slot for the uniform set is not the slot for the topology in an extensible structure. Formerly part of proof for tuslem . (Contributed by AV, 28-Oct-2024)

Ref Expression
Assertion unifndxntsetndx UnifSet ndx TopSet ndx

Proof

Step Hyp Ref Expression
1 9re 9
2 1nn 1
3 3nn0 3 0
4 9nn0 9 0
5 9lt10 9 < 10
6 2 3 4 5 declti 9 < 13
7 1 6 gtneii 13 9
8 unifndx UnifSet ndx = 13
9 tsetndx TopSet ndx = 9
10 8 9 neeq12i UnifSet ndx TopSet ndx 13 9
11 7 10 mpbir UnifSet ndx TopSet ndx