Metamath Proof Explorer


Theorem unilbss

Description: Superclass of the greatest lower bound. A dual statement of ssintub . (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Assertion unilbss xB|xAA

Proof

Step Hyp Ref Expression
1 unissb xB|xAAyxB|xAyA
2 sseq1 x=yxAyA
3 2 elrab yxB|xAyByA
4 3 simprbi yxB|xAyA
5 1 4 mprgbir xB|xAA