Metamath Proof Explorer


Theorem uniqs

Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008)

Ref Expression
Assertion uniqs RVA/R=RA

Proof

Step Hyp Ref Expression
1 ecexg RVxRV
2 1 ralrimivw RVxAxRV
3 dfiun2g xAxRVxAxR=y|xAy=xR
4 2 3 syl RVxAxR=y|xAy=xR
5 4 eqcomd RVy|xAy=xR=xAxR
6 df-qs A/R=y|xAy=xR
7 6 unieqi A/R=y|xAy=xR
8 df-ec xR=Rx
9 8 a1i xAxR=Rx
10 9 iuneq2i xAxR=xARx
11 imaiun RxAx=xARx
12 iunid xAx=A
13 12 imaeq2i RxAx=RA
14 10 11 13 3eqtr2ri RA=xAxR
15 5 7 14 3eqtr4g RVA/R=RA