Metamath Proof Explorer


Theorem unopn

Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion unopn JTopAJBJABJ

Proof

Step Hyp Ref Expression
1 uniprg AJBJAB=AB
2 1 3adant1 JTopAJBJAB=AB
3 prssi AJBJABJ
4 uniopn JTopABJABJ
5 3 4 sylan2 JTopAJBJABJ
6 5 3impb JTopAJBJABJ
7 2 6 eqeltrrd JTopAJBJABJ