Metamath Proof Explorer


Theorem unxpdom

Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 13-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion unxpdom 1 𝑜 A 1 𝑜 B A B A × B

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i 1 𝑜 A A V
3 1 brrelex2i 1 𝑜 B B V
4 2 3 anim12i 1 𝑜 A 1 𝑜 B A V B V
5 breq2 x = A 1 𝑜 x 1 𝑜 A
6 5 anbi1d x = A 1 𝑜 x 1 𝑜 y 1 𝑜 A 1 𝑜 y
7 uneq1 x = A x y = A y
8 xpeq1 x = A x × y = A × y
9 7 8 breq12d x = A x y x × y A y A × y
10 6 9 imbi12d x = A 1 𝑜 x 1 𝑜 y x y x × y 1 𝑜 A 1 𝑜 y A y A × y
11 breq2 y = B 1 𝑜 y 1 𝑜 B
12 11 anbi2d y = B 1 𝑜 A 1 𝑜 y 1 𝑜 A 1 𝑜 B
13 uneq2 y = B A y = A B
14 xpeq2 y = B A × y = A × B
15 13 14 breq12d y = B A y A × y A B A × B
16 12 15 imbi12d y = B 1 𝑜 A 1 𝑜 y A y A × y 1 𝑜 A 1 𝑜 B A B A × B
17 eqid z x y if z x z if z = v w t if z = w u v z = z x y if z x z if z = v w t if z = w u v z
18 eqid if z x z if z = v w t if z = w u v z = if z x z if z = v w t if z = w u v z
19 17 18 unxpdomlem3 1 𝑜 x 1 𝑜 y x y x × y
20 10 16 19 vtocl2g A V B V 1 𝑜 A 1 𝑜 B A B A × B
21 4 20 mpcom 1 𝑜 A 1 𝑜 B A B A × B