Metamath Proof Explorer


Theorem upgredginwlk

Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021)

Ref Expression
Hypotheses edginwlk.i I=iEdgG
edginwlk.e E=EdgG
Assertion upgredginwlk GUPGraphFWorddomIK0..^FIFKE

Proof

Step Hyp Ref Expression
1 edginwlk.i I=iEdgG
2 edginwlk.e E=EdgG
3 upgruhgr GUPGraphGUHGraph
4 1 uhgrfun GUHGraphFunI
5 3 4 syl GUPGraphFunI
6 1 2 edginwlk FunIFWorddomIK0..^FIFKE
7 6 3expia FunIFWorddomIK0..^FIFKE
8 5 7 sylan GUPGraphFWorddomIK0..^FIFKE