Metamath Proof Explorer


Theorem upgrimwlklem1

Description: Lemma 1 for upgrimwlk and upgrimwlklen . (Contributed by AV, 25-Oct-2025)

Ref Expression
Hypotheses upgrimwlk.i I = iEdg G
upgrimwlk.j J = iEdg H
upgrimwlk.g φ G USHGraph
upgrimwlk.h φ H USHGraph
upgrimwlk.n φ N G GraphIso H
upgrimwlk.e E = x dom F J -1 N I F x
upgrimwlk.f φ F Word dom I
Assertion upgrimwlklem1 φ E = F

Proof

Step Hyp Ref Expression
1 upgrimwlk.i I = iEdg G
2 upgrimwlk.j J = iEdg H
3 upgrimwlk.g φ G USHGraph
4 upgrimwlk.h φ H USHGraph
5 upgrimwlk.n φ N G GraphIso H
6 upgrimwlk.e E = x dom F J -1 N I F x
7 upgrimwlk.f φ F Word dom I
8 fvexd φ x dom F J -1 N I F x V
9 8 ralrimiva φ x dom F J -1 N I F x V
10 eqid x dom F J -1 N I F x = x dom F J -1 N I F x
11 10 fnmpt x dom F J -1 N I F x V x dom F J -1 N I F x Fn dom F
12 9 11 syl φ x dom F J -1 N I F x Fn dom F
13 6 fneq1i E Fn dom F x dom F J -1 N I F x Fn dom F
14 12 13 sylibr φ E Fn dom F
15 hashfn E Fn dom F E = dom F
16 14 15 syl φ E = dom F
17 wrdf F Word dom I F : 0 ..^ F dom I
18 ffun F : 0 ..^ F dom I Fun F
19 7 17 18 3syl φ Fun F
20 19 funfnd φ F Fn dom F
21 hashfn F Fn dom F F = dom F
22 20 21 syl φ F = dom F
23 16 22 eqtr4d φ E = F