Metamath Proof Explorer


Theorem upgrop

Description: A pseudograph represented by an ordered pair. (Contributed by AV, 12-Dec-2021)

Ref Expression
Assertion upgrop GUPGraphVtxGiEdgGUPGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 upgrf GUPGraphiEdgG:domiEdgGp𝒫VtxG|p2
4 fvex VtxGV
5 fvex iEdgGV
6 4 5 pm3.2i VtxGViEdgGV
7 opex VtxGiEdgGV
8 eqid VtxVtxGiEdgG=VtxVtxGiEdgG
9 eqid iEdgVtxGiEdgG=iEdgVtxGiEdgG
10 8 9 isupgr VtxGiEdgGVVtxGiEdgGUPGraphiEdgVtxGiEdgG:domiEdgVtxGiEdgGp𝒫VtxVtxGiEdgG|p2
11 7 10 mp1i VtxGViEdgGVVtxGiEdgGUPGraphiEdgVtxGiEdgG:domiEdgVtxGiEdgGp𝒫VtxVtxGiEdgG|p2
12 opiedgfv VtxGViEdgGViEdgVtxGiEdgG=iEdgG
13 12 dmeqd VtxGViEdgGVdomiEdgVtxGiEdgG=domiEdgG
14 opvtxfv VtxGViEdgGVVtxVtxGiEdgG=VtxG
15 14 pweqd VtxGViEdgGV𝒫VtxVtxGiEdgG=𝒫VtxG
16 15 difeq1d VtxGViEdgGV𝒫VtxVtxGiEdgG=𝒫VtxG
17 16 rabeqdv VtxGViEdgGVp𝒫VtxVtxGiEdgG|p2=p𝒫VtxG|p2
18 12 13 17 feq123d VtxGViEdgGViEdgVtxGiEdgG:domiEdgVtxGiEdgGp𝒫VtxVtxGiEdgG|p2iEdgG:domiEdgGp𝒫VtxG|p2
19 11 18 bitrd VtxGViEdgGVVtxGiEdgGUPGraphiEdgG:domiEdgGp𝒫VtxG|p2
20 6 19 mp1i GUPGraphVtxGiEdgGUPGraphiEdgG:domiEdgGp𝒫VtxG|p2
21 3 20 mpbird GUPGraphVtxGiEdgGUPGraph