Metamath Proof Explorer


Theorem upgrwlkdvde

Description: In a pseudograph, all edges of a walk consisting of different vertices are different. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk . (Contributed by AV, 17-Jan-2021)

Ref Expression
Assertion upgrwlkdvde GUPGraphFWalksGPFunP-1FunF-1

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 upgriswlk GUPGraphFWalksGPFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
4 df-f1 P:0F1-1VtxGP:0FVtxGFunP-1
5 4 simplbi2 P:0FVtxGFunP-1P:0F1-1VtxG
6 5 3ad2ant2 FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1FunP-1P:0F1-1VtxG
7 6 impcom FunP-1FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1P:0F1-1VtxG
8 simpr1 FunP-1FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1FWorddomiEdgG
9 7 8 jca FunP-1FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1P:0F1-1VtxGFWorddomiEdgG
10 simpr3 FunP-1FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1k0..^FiEdgGFk=PkPk+1
11 upgrwlkdvdelem P:0F1-1VtxGFWorddomiEdgGk0..^FiEdgGFk=PkPk+1FunF-1
12 9 10 11 sylc FunP-1FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1FunF-1
13 12 expcom FWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1FunP-1FunF-1
14 3 13 syl6bi GUPGraphFWalksGPFunP-1FunF-1
15 14 3imp GUPGraphFWalksGPFunP-1FunF-1