| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdfin |
|
| 2 |
|
wrdf |
|
| 3 |
|
simpr |
|
| 4 |
3
|
adantr |
|
| 5 |
|
2fveq3 |
|
| 6 |
|
fveq2 |
|
| 7 |
|
fvoveq1 |
|
| 8 |
6 7
|
preq12d |
|
| 9 |
5 8
|
eqeq12d |
|
| 10 |
9
|
rspcv |
|
| 11 |
|
2fveq3 |
|
| 12 |
|
fveq2 |
|
| 13 |
|
fvoveq1 |
|
| 14 |
12 13
|
preq12d |
|
| 15 |
11 14
|
eqeq12d |
|
| 16 |
15
|
rspcv |
|
| 17 |
10 16
|
anim12ii |
|
| 18 |
|
fveq2 |
|
| 19 |
|
simpl |
|
| 20 |
19
|
eqcomd |
|
| 21 |
20
|
adantl |
|
| 22 |
|
simpl |
|
| 23 |
|
simpr |
|
| 24 |
23
|
adantl |
|
| 25 |
21 22 24
|
3eqtrd |
|
| 26 |
|
fvex |
|
| 27 |
|
fvex |
|
| 28 |
|
fvex |
|
| 29 |
|
fvex |
|
| 30 |
26 27 28 29
|
preq12b |
|
| 31 |
|
dff13 |
|
| 32 |
|
elfzofz |
|
| 33 |
|
elfzofz |
|
| 34 |
|
fveqeq2 |
|
| 35 |
|
eqeq1 |
|
| 36 |
34 35
|
imbi12d |
|
| 37 |
|
fveq2 |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
|
eqeq2 |
|
| 40 |
38 39
|
imbi12d |
|
| 41 |
36 40
|
rspc2v |
|
| 42 |
32 33 41
|
syl2an |
|
| 43 |
42
|
a1dd |
|
| 44 |
43
|
com14 |
|
| 45 |
44
|
adantr |
|
| 46 |
|
hashcl |
|
| 47 |
32
|
a1i |
|
| 48 |
|
fzofzp1 |
|
| 49 |
47 48
|
anim12d1 |
|
| 50 |
49
|
imp |
|
| 51 |
|
fveq2 |
|
| 52 |
51
|
eqeq2d |
|
| 53 |
|
eqeq2 |
|
| 54 |
52 53
|
imbi12d |
|
| 55 |
36 54
|
rspc2v |
|
| 56 |
50 55
|
syl |
|
| 57 |
56
|
imp |
|
| 58 |
|
fzofzp1 |
|
| 59 |
58
|
a1i |
|
| 60 |
59 33
|
anim12d1 |
|
| 61 |
60
|
imp |
|
| 62 |
|
fveqeq2 |
|
| 63 |
|
eqeq1 |
|
| 64 |
62 63
|
imbi12d |
|
| 65 |
37
|
eqeq2d |
|
| 66 |
|
eqeq2 |
|
| 67 |
65 66
|
imbi12d |
|
| 68 |
64 67
|
rspc2v |
|
| 69 |
61 68
|
syl |
|
| 70 |
69
|
imp |
|
| 71 |
57 70
|
anim12d |
|
| 72 |
71
|
expimpd |
|
| 73 |
|
oveq1 |
|
| 74 |
73
|
eqeq1d |
|
| 75 |
74
|
adantl |
|
| 76 |
|
elfzonn0 |
|
| 77 |
|
nn0cn |
|
| 78 |
|
add1p1 |
|
| 79 |
77 78
|
syl |
|
| 80 |
79
|
eqeq1d |
|
| 81 |
|
2cnd |
|
| 82 |
|
2ne0 |
|
| 83 |
82
|
a1i |
|
| 84 |
|
addn0nid |
|
| 85 |
77 81 83 84
|
syl3anc |
|
| 86 |
|
eqneqall |
|
| 87 |
85 86
|
syl5com |
|
| 88 |
80 87
|
sylbid |
|
| 89 |
76 88
|
syl |
|
| 90 |
89
|
adantl |
|
| 91 |
90
|
adantr |
|
| 92 |
75 91
|
sylbid |
|
| 93 |
92
|
expimpd |
|
| 94 |
93
|
adantl |
|
| 95 |
72 94
|
syld |
|
| 96 |
95
|
ex |
|
| 97 |
46 96
|
syl |
|
| 98 |
97
|
com3l |
|
| 99 |
98
|
expd |
|
| 100 |
99
|
com34 |
|
| 101 |
100
|
com14 |
|
| 102 |
45 101
|
jaoi |
|
| 103 |
102
|
adantld |
|
| 104 |
31 103
|
biimtrid |
|
| 105 |
104
|
com23 |
|
| 106 |
30 105
|
sylbi |
|
| 107 |
25 106
|
syl |
|
| 108 |
107
|
ex |
|
| 109 |
18 108
|
syl |
|
| 110 |
109
|
com15 |
|
| 111 |
17 110
|
syld |
|
| 112 |
111
|
com14 |
|
| 113 |
112
|
imp |
|
| 114 |
113
|
impcom |
|
| 115 |
114
|
ralrimivv |
|
| 116 |
115
|
adantlr |
|
| 117 |
|
dff13 |
|
| 118 |
4 116 117
|
sylanbrc |
|
| 119 |
|
df-f1 |
|
| 120 |
118 119
|
sylib |
|
| 121 |
|
simpr |
|
| 122 |
120 121
|
syl |
|
| 123 |
122
|
ex |
|
| 124 |
123
|
expd |
|
| 125 |
1 2 124
|
syl2anc |
|
| 126 |
125
|
impcom |
|