Metamath Proof Explorer


Theorem uprcl2a

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypothesis uprcl2a.x No typesetting found for |- ( ph -> X ( G ( O UP P ) W ) M ) with typecode |-
Assertion uprcl2a φ G O Func P

Proof

Step Hyp Ref Expression
1 uprcl2a.x Could not format ( ph -> X ( G ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( G ( O UP P ) W ) M ) with typecode |-
2 df-br Could not format ( X ( G ( O UP P ) W ) M <-> <. X , M >. e. ( G ( O UP P ) W ) ) : No typesetting found for |- ( X ( G ( O UP P ) W ) M <-> <. X , M >. e. ( G ( O UP P ) W ) ) with typecode |-
3 1 2 sylib Could not format ( ph -> <. X , M >. e. ( G ( O UP P ) W ) ) : No typesetting found for |- ( ph -> <. X , M >. e. ( G ( O UP P ) W ) ) with typecode |-
4 eqid Base P = Base P
5 4 uprcl Could not format ( <. X , M >. e. ( G ( O UP P ) W ) -> ( G e. ( O Func P ) /\ W e. ( Base ` P ) ) ) : No typesetting found for |- ( <. X , M >. e. ( G ( O UP P ) W ) -> ( G e. ( O Func P ) /\ W e. ( Base ` P ) ) ) with typecode |-
6 3 5 syl φ G O Func P W Base P
7 6 simpld φ G O Func P