Metamath Proof Explorer


Theorem usgredg2vtxeuALT

Description: Alternate proof of usgredg2vtxeu , using edgiedgb , the general translation from ( iEdgG ) to ( EdgG ) . (Contributed by AV, 18-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion usgredg2vtxeuALT GUSGraphEEdgGYE∃!yVtxGE=Yy

Proof

Step Hyp Ref Expression
1 usgruhgr GUSGraphGUHGraph
2 eqid iEdgG=iEdgG
3 2 uhgredgiedgb GUHGraphEEdgGxdomiEdgGE=iEdgGx
4 1 3 syl GUSGraphEEdgGxdomiEdgGE=iEdgGx
5 eqid VtxG=VtxG
6 5 2 usgredgreu GUSGraphxdomiEdgGYiEdgGx∃!yVtxGiEdgGx=Yy
7 6 3expia GUSGraphxdomiEdgGYiEdgGx∃!yVtxGiEdgGx=Yy
8 7 3adant3 GUSGraphxdomiEdgGE=iEdgGxYiEdgGx∃!yVtxGiEdgGx=Yy
9 eleq2 E=iEdgGxYEYiEdgGx
10 eqeq1 E=iEdgGxE=YyiEdgGx=Yy
11 10 reubidv E=iEdgGx∃!yVtxGE=Yy∃!yVtxGiEdgGx=Yy
12 9 11 imbi12d E=iEdgGxYE∃!yVtxGE=YyYiEdgGx∃!yVtxGiEdgGx=Yy
13 12 3ad2ant3 GUSGraphxdomiEdgGE=iEdgGxYE∃!yVtxGE=YyYiEdgGx∃!yVtxGiEdgGx=Yy
14 8 13 mpbird GUSGraphxdomiEdgGE=iEdgGxYE∃!yVtxGE=Yy
15 14 3exp GUSGraphxdomiEdgGE=iEdgGxYE∃!yVtxGE=Yy
16 15 rexlimdv GUSGraphxdomiEdgGE=iEdgGxYE∃!yVtxGE=Yy
17 4 16 sylbid GUSGraphEEdgGYE∃!yVtxGE=Yy
18 17 3imp GUSGraphEEdgGYE∃!yVtxGE=Yy