Metamath Proof Explorer


Theorem usgredgffibi

Description: The number of edges in a simple graph is finite iff its edge function is finite. (Contributed by AV, 10-Jan-2020) (Revised by AV, 22-Oct-2020)

Ref Expression
Hypotheses usgredgffibi.I I=iEdgG
usgredgffibi.e E=EdgG
Assertion usgredgffibi GUSGraphEFinIFin

Proof

Step Hyp Ref Expression
1 usgredgffibi.I I=iEdgG
2 usgredgffibi.e E=EdgG
3 edgval EdgG=raniEdgG
4 1 eqcomi iEdgG=I
5 4 rneqi raniEdgG=ranI
6 2 3 5 3eqtri E=ranI
7 6 eleq1i EFinranIFin
8 1 fvexi IV
9 eqid VtxG=VtxG
10 9 1 usgrfs GUSGraphI:domI1-1x𝒫VtxG|x=2
11 f1vrnfibi IVI:domI1-1x𝒫VtxG|x=2IFinranIFin
12 8 10 11 sylancr GUSGraphIFinranIFin
13 7 12 bitr4id GUSGraphEFinIFin