Metamath Proof Explorer


Theorem usgredgleordALT

Description: Alternate proof for usgredgleord based on usgriedgleord . In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020) (Proof shortened by AV, 5-May-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses usgredgleord.v V=VtxG
usgredgleord.e E=EdgG
Assertion usgredgleordALT GUSGraphNVeE|NeV

Proof

Step Hyp Ref Expression
1 usgredgleord.v V=VtxG
2 usgredgleord.e E=EdgG
3 fvex iEdgGV
4 3 dmex domiEdgGV
5 4 rabex xdomiEdgG|NiEdgGxV
6 5 a1i GUSGraphNVxdomiEdgG|NiEdgGxV
7 eqid iEdgG=iEdgG
8 eqid xdomiEdgG|NiEdgGx=xdomiEdgG|NiEdgGx
9 eleq2w e=fNeNf
10 9 cbvrabv eE|Ne=fE|Nf
11 eqid yxdomiEdgG|NiEdgGxiEdgGy=yxdomiEdgG|NiEdgGxiEdgGy
12 2 7 1 8 10 11 usgredgedg GUSGraphNVyxdomiEdgG|NiEdgGxiEdgGy:xdomiEdgG|NiEdgGx1-1 ontoeE|Ne
13 6 12 hasheqf1od GUSGraphNVxdomiEdgG|NiEdgGx=eE|Ne
14 1 7 usgriedgleord GUSGraphNVxdomiEdgG|NiEdgGxV
15 13 14 eqbrtrrd GUSGraphNVeE|NeV