Metamath Proof Explorer


Theorem usgredgreu

Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg3.v V=VtxG
usgredg3.e E=iEdgG
Assertion usgredgreu GUSGraphXdomEYEX∃!yVEX=Yy

Proof

Step Hyp Ref Expression
1 usgredg3.v V=VtxG
2 usgredg3.e E=iEdgG
3 1 2 usgredg4 GUSGraphXdomEYEXyVEX=Yy
4 eqtr2 EX=YyEX=YxYy=Yx
5 vex yV
6 vex xV
7 5 6 preqr2 Yy=Yxy=x
8 4 7 syl EX=YyEX=Yxy=x
9 8 a1i GUSGraphXdomEYEXyVxVEX=YyEX=Yxy=x
10 9 ralrimivva GUSGraphXdomEYEXyVxVEX=YyEX=Yxy=x
11 preq2 y=xYy=Yx
12 11 eqeq2d y=xEX=YyEX=Yx
13 12 reu4 ∃!yVEX=YyyVEX=YyyVxVEX=YyEX=Yxy=x
14 3 10 13 sylanbrc GUSGraphXdomEYEX∃!yVEX=Yy