Metamath Proof Explorer


Theorem usgrexmpl

Description: G is a simple graph of five vertices 0 , 1 , 2 , 3 , 4 , with edges { 0 , 1 } , { 1 , 2 } , { 2 , 0 } , { 0 , 3 } . (Contributed by Alexander van der Vekens, 15-Aug-2017) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses usgrexmpl.v V=04
usgrexmpl.e E=⟨“01122003”⟩
usgrexmpl.g G=VE
Assertion usgrexmpl GUSGraph

Proof

Step Hyp Ref Expression
1 usgrexmpl.v V=04
2 usgrexmpl.e E=⟨“01122003”⟩
3 usgrexmpl.g G=VE
4 1 2 usgrexmplef E:domE1-1e𝒫V|e=2
5 opex VEV
6 3 5 eqeltri GV
7 eqid VtxG=VtxG
8 eqid iEdgG=iEdgG
9 7 8 isusgrs GVGUSGraphiEdgG:domiEdgG1-1e𝒫VtxG|e=2
10 1 2 3 usgrexmpllem VtxG=ViEdgG=E
11 simpr VtxG=ViEdgG=EiEdgG=E
12 11 dmeqd VtxG=ViEdgG=EdomiEdgG=domE
13 pweq VtxG=V𝒫VtxG=𝒫V
14 13 adantr VtxG=ViEdgG=E𝒫VtxG=𝒫V
15 14 rabeqdv VtxG=ViEdgG=Ee𝒫VtxG|e=2=e𝒫V|e=2
16 11 12 15 f1eq123d VtxG=ViEdgG=EiEdgG:domiEdgG1-1e𝒫VtxG|e=2E:domE1-1e𝒫V|e=2
17 10 16 ax-mp iEdgG:domiEdgG1-1e𝒫VtxG|e=2E:domE1-1e𝒫V|e=2
18 9 17 bitrdi GVGUSGraphE:domE1-1e𝒫V|e=2
19 6 18 ax-mp GUSGraphE:domE1-1e𝒫V|e=2
20 4 19 mpbir GUSGraph