Metamath Proof Explorer
Description: G is a simple graph of six vertices 0 , 1 , 2 , 3 , 4 , 5 , with
edges { 0 , 1 } , { 1 , 2 } , { 0 , 2 } , { 0 , 3 } , { 3 , 4 } ,
{ 3 , 5 } , { 4 , 5 } . (Contributed by AV, 3-Aug-2025)
|
|
Ref |
Expression |
|
Hypotheses |
usgrexmpl1.v |
|
|
|
usgrexmpl1.e |
|
|
|
usgrexmpl1.g |
|
|
Assertion |
usgrexmpl1 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexmpl1.v |
|
| 2 |
|
usgrexmpl1.e |
|
| 3 |
|
usgrexmpl1.g |
|
| 4 |
1 2
|
usgrexmpl1lem |
|
| 5 |
3
|
eleq1i |
|
| 6 |
1
|
ovexi |
|
| 7 |
|
s7cli |
|
| 8 |
2 7
|
eqeltri |
|
| 9 |
|
isusgrop |
|
| 10 |
6 8 9
|
mp2an |
|
| 11 |
5 10
|
bitri |
|
| 12 |
4 11
|
mpbir |
|