Metamath Proof Explorer


Theorem usgrexmpldifpr

Description: Lemma for usgrexmpledg : all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017)

Ref Expression
Assertion usgrexmpldifpr 011201200103122012032003

Proof

Step Hyp Ref Expression
1 0z 0
2 1z 1
3 1 2 pm3.2i 01
4 2z 2
5 2 4 pm3.2i 12
6 3 5 pm3.2i 0112
7 ax-1ne0 10
8 7 necomi 01
9 2ne0 20
10 9 necomi 02
11 8 10 pm3.2i 0102
12 11 orci 01021112
13 prneimg 0112010211120112
14 6 12 13 mp2 0112
15 4 1 pm3.2i 20
16 3 15 pm3.2i 0120
17 1ne2 12
18 17 7 pm3.2i 1210
19 18 olci 02001210
20 prneimg 0120020012100120
21 16 19 20 mp2 0120
22 3nn 3
23 1 22 pm3.2i 03
24 3 23 pm3.2i 0103
25 1re 1
26 1lt3 1<3
27 25 26 ltneii 13
28 7 27 pm3.2i 1013
29 28 olci 00031013
30 prneimg 0103000310130103
31 24 29 30 mp2 0103
32 14 21 31 3pm3.2i 011201200103
33 5 15 pm3.2i 1220
34 18 orci 12102220
35 prneimg 1220121022201220
36 33 34 35 mp2 1220
37 5 23 pm3.2i 1203
38 28 orci 10132023
39 prneimg 1203101320231203
40 37 38 39 mp2 1203
41 15 23 pm3.2i 2003
42 2re 2
43 2lt3 2<3
44 42 43 ltneii 23
45 9 44 pm3.2i 2023
46 45 orci 20230003
47 prneimg 2003202300032003
48 41 46 47 mp2 2003
49 36 40 48 3pm3.2i 122012032003
50 32 49 pm3.2i 011201200103122012032003