Metamath Proof Explorer


Theorem usgrf1oedg

Description: The edge function of a simple graph is a 1-1 function onto the set of edges. (Contributed by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgrf1oedg.i I = iEdg G
usgrf1oedg.e E = Edg G
Assertion usgrf1oedg G USGraph I : dom I 1-1 onto E

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i I = iEdg G
2 usgrf1oedg.e E = Edg G
3 eqid Vtx G = Vtx G
4 3 1 usgrf G USGraph I : dom I 1-1 x 𝒫 Vtx G | x = 2
5 f1f1orn I : dom I 1-1 x 𝒫 Vtx G | x = 2 I : dom I 1-1 onto ran I
6 4 5 syl G USGraph I : dom I 1-1 onto ran I
7 edgval Edg G = ran iEdg G
8 7 a1i G USGraph Edg G = ran iEdg G
9 1 eqcomi iEdg G = I
10 9 rneqi ran iEdg G = ran I
11 8 10 eqtrdi G USGraph Edg G = ran I
12 2 11 eqtrid G USGraph E = ran I
13 12 f1oeq3d G USGraph I : dom I 1-1 onto E I : dom I 1-1 onto ran I
14 6 13 mpbird G USGraph I : dom I 1-1 onto E