Metamath Proof Explorer


Theorem usgriedgleord

Description: Alternate version of usgredgleord , not using the notation ( EdgG ) . In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v V=VtxG
usgredg2v.e E=iEdgG
Assertion usgriedgleord GUSGraphNVxdomE|NExV

Proof

Step Hyp Ref Expression
1 usgredg2v.v V=VtxG
2 usgredg2v.e E=iEdgG
3 1 fvexi VV
4 eqid xdomE|NEx=xdomE|NEx
5 eqid yxdomE|NExιzV|Ey=zN=yxdomE|NExιzV|Ey=zN
6 1 2 4 5 usgredg2v GUSGraphNVyxdomE|NExιzV|Ey=zN:xdomE|NEx1-1V
7 f1domg VVyxdomE|NExιzV|Ey=zN:xdomE|NEx1-1VxdomE|NExV
8 3 6 7 mpsyl GUSGraphNVxdomE|NExV
9 hashdomi xdomE|NExVxdomE|NExV
10 8 9 syl GUSGraphNVxdomE|NExV