Metamath Proof Explorer


Theorem usgrun

Description: The union U of two simple graphs G and H with the same vertex set V is a multigraph (not necessarily a simple graph!) with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020)

Ref Expression
Hypotheses usgrun.g φGUSGraph
usgrun.h φHUSGraph
usgrun.e E=iEdgG
usgrun.f F=iEdgH
usgrun.vg V=VtxG
usgrun.vh φVtxH=V
usgrun.i φdomEdomF=
usgrun.u φUW
usgrun.v φVtxU=V
usgrun.un φiEdgU=EF
Assertion usgrun φUUMGraph

Proof

Step Hyp Ref Expression
1 usgrun.g φGUSGraph
2 usgrun.h φHUSGraph
3 usgrun.e E=iEdgG
4 usgrun.f F=iEdgH
5 usgrun.vg V=VtxG
6 usgrun.vh φVtxH=V
7 usgrun.i φdomEdomF=
8 usgrun.u φUW
9 usgrun.v φVtxU=V
10 usgrun.un φiEdgU=EF
11 usgrumgr GUSGraphGUMGraph
12 1 11 syl φGUMGraph
13 usgrumgr HUSGraphHUMGraph
14 2 13 syl φHUMGraph
15 12 14 3 4 5 6 7 8 9 10 umgrun φUUMGraph