Metamath Proof Explorer


Theorem usgrvd00

Description: If every vertex in a simple graph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018) (Revised by AV, 17-Dec-2020) (Proof shortened by AV, 23-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v V=VtxG
vtxdusgradjvtx.e E=EdgG
Assertion usgrvd00 GUSGraphvVVtxDegGv=0E=

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v V=VtxG
2 vtxdusgradjvtx.e E=EdgG
3 usgruhgr GUSGraphGUHGraph
4 1 2 uhgrvd00 GUHGraphvVVtxDegGv=0E=
5 3 4 syl GUSGraphvVVtxDegGv=0E=