Metamath Proof Explorer


Theorem uspgrsprfv

Description: The value of the function F which maps a "simple pseudograph" for a fixed set V of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for G as defined here, the function F is a bijection between the "simple pseudographs" and the subsets of the set of pairs P over the fixed set V of vertices, see uspgrbispr . (Contributed by AV, 24-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
uspgrsprf.f F=gG2ndg
Assertion uspgrsprfv XGFX=2ndX

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 uspgrsprf.f F=gG2ndg
4 fveq2 g=X2ndg=2ndX
5 id XGXG
6 fvexd XG2ndXV
7 3 4 5 6 fvmptd3 XGFX=2ndX