Metamath Proof Explorer


Theorem uspgrushgr

Description: A simple pseudograph is an undirected simple hypergraph. (Contributed by AV, 19-Jan-2020) (Revised by AV, 15-Oct-2020)

Ref Expression
Assertion uspgrushgr GUSHGraphGUSHGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 isuspgr GUSHGraphGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
4 ssrab2 x𝒫VtxG|x2𝒫VtxG
5 f1ss iEdgG:domiEdgG1-1x𝒫VtxG|x2x𝒫VtxG|x2𝒫VtxGiEdgG:domiEdgG1-1𝒫VtxG
6 4 5 mpan2 iEdgG:domiEdgG1-1x𝒫VtxG|x2iEdgG:domiEdgG1-1𝒫VtxG
7 3 6 syl6bi GUSHGraphGUSHGraphiEdgG:domiEdgG1-1𝒫VtxG
8 1 2 isushgr GUSHGraphGUSHGraphiEdgG:domiEdgG1-1𝒫VtxG
9 7 8 sylibrd GUSHGraphGUSHGraphGUSHGraph
10 9 pm2.43i GUSHGraphGUSHGraph