Metamath Proof Explorer


Theorem ussval

Description: The uniform structure on uniform space W . This proof uses a trick with fvprc to avoid requiring W to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Hypotheses ussval.1 B = Base W
ussval.2 U = UnifSet W
Assertion ussval U 𝑡 B × B = UnifSt W

Proof

Step Hyp Ref Expression
1 ussval.1 B = Base W
2 ussval.2 U = UnifSet W
3 1 1 xpeq12i B × B = Base W × Base W
4 2 3 oveq12i U 𝑡 B × B = UnifSet W 𝑡 Base W × Base W
5 fveq2 w = W UnifSet w = UnifSet W
6 fveq2 w = W Base w = Base W
7 6 sqxpeqd w = W Base w × Base w = Base W × Base W
8 5 7 oveq12d w = W UnifSet w 𝑡 Base w × Base w = UnifSet W 𝑡 Base W × Base W
9 df-uss UnifSt = w V UnifSet w 𝑡 Base w × Base w
10 ovex UnifSet W 𝑡 Base W × Base W V
11 8 9 10 fvmpt W V UnifSt W = UnifSet W 𝑡 Base W × Base W
12 4 11 eqtr4id W V U 𝑡 B × B = UnifSt W
13 0rest 𝑡 B × B =
14 fvprc ¬ W V UnifSet W =
15 2 14 eqtrid ¬ W V U =
16 15 oveq1d ¬ W V U 𝑡 B × B = 𝑡 B × B
17 fvprc ¬ W V UnifSt W =
18 13 16 17 3eqtr4a ¬ W V U 𝑡 B × B = UnifSt W
19 12 18 pm2.61i U 𝑡 B × B = UnifSt W