Metamath Proof Explorer


Theorem uzenom

Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis uzinf.1 Z=M
Assertion uzenom MZω

Proof

Step Hyp Ref Expression
1 uzinf.1 Z=M
2 fveq2 M=ifMM0M=ifMM0
3 1 2 eqtrid M=ifMM0Z=ifMM0
4 3 breq1d M=ifMM0ZωifMM0ω
5 omex ωV
6 fvex ifMM0V
7 0z 0
8 7 elimel ifMM0
9 eqid recxVx+1ifMM0ω=recxVx+1ifMM0ω
10 8 9 om2uzf1oi recxVx+1ifMM0ω:ω1-1 ontoifMM0
11 f1oen2g ωVifMM0VrecxVx+1ifMM0ω:ω1-1 ontoifMM0ωifMM0
12 5 6 10 11 mp3an ωifMM0
13 12 ensymi ifMM0ω
14 4 13 dedth MZω