Metamath Proof Explorer


Theorem uzsubfz0

Description: Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018)

Ref Expression
Assertion uzsubfz0 L0NLNL0N

Proof

Step Hyp Ref Expression
1 simpl L0NLL0
2 eluznn0 L0NLN0
3 eluzle NLLN
4 3 adantl L0NLLN
5 elfz2nn0 L0NL0N0LN
6 1 2 4 5 syl3anbrc L0NLL0N
7 fznn0sub2 L0NNL0N
8 6 7 syl L0NLNL0N