Metamath Proof Explorer


Theorem fz0fzdiffz0

Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018)

Ref Expression
Assertion fz0fzdiffz0 M0NKMNKM0N

Proof

Step Hyp Ref Expression
1 fz0fzelfz0 M0NKMNK0N
2 elfzle1 KMNMK
3 2 adantl M0NKMNMK
4 3 adantl K0NM0NKMNMK
5 elfznn0 M0NM0
6 5 adantr M0NKMNM0
7 elfznn0 K0NK0
8 nn0sub M0K0MKKM0
9 6 7 8 syl2anr K0NM0NKMNMKKM0
10 4 9 mpbid K0NM0NKMNKM0
11 elfz3nn0 K0NN0
12 11 adantr K0NM0NKMNN0
13 elfz2nn0 M0NM0N0MN
14 elfz2 KMNMNKMKKN
15 zsubcl KMKM
16 15 zred KMKM
17 16 ancoms MKKM
18 17 3adant2 MNKKM
19 zre KK
20 19 3ad2ant3 MNKK
21 zre NN
22 21 3ad2ant2 MNKN
23 18 20 22 3jca MNKKMKN
24 23 adantr MNKM0KMKN
25 24 adantr MNKM0KNKMKN
26 nn0ge0 M00M
27 26 adantl MNKM00M
28 nn0re M0M
29 subge02 KM0MKMK
30 20 28 29 syl2an MNKM00MKMK
31 27 30 mpbid MNKM0KMK
32 31 anim1i MNKM0KNKMKKN
33 letr KMKNKMKKNKMN
34 25 32 33 sylc MNKM0KNKMN
35 34 exp31 MNKM0KNKMN
36 35 a1i N0MNKM0KNKMN
37 36 com14 KNMNKM0N0KMN
38 37 adantl MKKNMNKM0N0KMN
39 38 impcom MNKMKKNM0N0KMN
40 14 39 sylbi KMNM0N0KMN
41 40 com13 N0M0KMNKMN
42 41 impcom M0N0KMNKMN
43 42 3adant3 M0N0MNKMNKMN
44 13 43 sylbi M0NKMNKMN
45 44 imp M0NKMNKMN
46 45 adantl K0NM0NKMNKMN
47 10 12 46 3jca K0NM0NKMNKM0N0KMN
48 1 47 mpancom M0NKMNKM0N0KMN
49 elfz2nn0 KM0NKM0N0KMN
50 48 49 sylibr M0NKMNKM0N