Metamath Proof Explorer


Theorem vcdi

Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vciOLD.1 G=1stW
vciOLD.2 S=2ndW
vciOLD.3 X=ranG
Assertion vcdi WCVecOLDABXCXASBGC=ASBGASC

Proof

Step Hyp Ref Expression
1 vciOLD.1 G=1stW
2 vciOLD.2 S=2ndW
3 vciOLD.3 X=ranG
4 1 2 3 vciOLD WCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
5 simpl zXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxzXySxGz=ySxGySz
6 5 ralimi yzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxyzXySxGz=ySxGySz
7 6 adantl 1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxyzXySxGz=ySxGySz
8 7 ralimi xX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxxXyzXySxGz=ySxGySz
9 8 3ad2ant3 GAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxxXyzXySxGz=ySxGySz
10 4 9 syl WCVecOLDxXyzXySxGz=ySxGySz
11 oveq1 x=BxGz=BGz
12 11 oveq2d x=BySxGz=ySBGz
13 oveq2 x=BySx=ySB
14 13 oveq1d x=BySxGySz=ySBGySz
15 12 14 eqeq12d x=BySxGz=ySxGySzySBGz=ySBGySz
16 oveq1 y=AySBGz=ASBGz
17 oveq1 y=AySB=ASB
18 oveq1 y=AySz=ASz
19 17 18 oveq12d y=AySBGySz=ASBGASz
20 16 19 eqeq12d y=AySBGz=ySBGySzASBGz=ASBGASz
21 oveq2 z=CBGz=BGC
22 21 oveq2d z=CASBGz=ASBGC
23 oveq2 z=CASz=ASC
24 23 oveq2d z=CASBGASz=ASBGASC
25 22 24 eqeq12d z=CASBGz=ASBGASzASBGC=ASBGASC
26 15 20 25 rspc3v BXACXxXyzXySxGz=ySxGySzASBGC=ASBGASC
27 10 26 syl5 BXACXWCVecOLDASBGC=ASBGASC
28 27 3com12 ABXCXWCVecOLDASBGC=ASBGASC
29 28 impcom WCVecOLDABXCXASBGC=ASBGASC