Metamath Proof Explorer


Theorem vczcl

Description: The zero vector is a vector. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vczcl.1 G=1stW
vczcl.2 X=ranG
vczcl.3 Z=GIdG
Assertion vczcl WCVecOLDZX

Proof

Step Hyp Ref Expression
1 vczcl.1 G=1stW
2 vczcl.2 X=ranG
3 vczcl.3 Z=GIdG
4 1 vcgrp WCVecOLDGGrpOp
5 2 3 grpoidcl GGrpOpZX
6 4 5 syl WCVecOLDZX