Metamath Proof Explorer


Theorem vdwapfval

Description: Define the arithmetic progression function, which takes as input a length k , a start point a , and a step d and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion vdwapfval K0APK=a,dranm0K1a+md

Proof

Step Hyp Ref Expression
1 simp1 k=Kadk=K
2 1 oveq1d k=Kadk1=K1
3 2 oveq2d k=Kad0k1=0K1
4 3 mpteq1d k=Kadm0k1a+md=m0K1a+md
5 4 rneqd k=Kadranm0k1a+md=ranm0K1a+md
6 5 mpoeq3dva k=Ka,dranm0k1a+md=a,dranm0K1a+md
7 df-vdwap AP=k0a,dranm0k1a+md
8 nnex V
9 8 8 mpoex a,dranm0K1a+mdV
10 6 7 9 fvmpt K0APK=a,dranm0K1a+md