Metamath Proof Explorer


Theorem vpwex

Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of TakeutiZaring p. 17. (Contributed by NM, 30-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Revised to prove pwexg from vpwex . (Revised by BJ, 10-Aug-2022)

Ref Expression
Assertion vpwex 𝒫xV

Proof

Step Hyp Ref Expression
1 df-pw 𝒫x=w|wx
2 axpow2 yzzxzy
3 2 bm1.3ii yzzyzx
4 sseq1 w=zwxzx
5 4 eqabbw y=w|wxzzyzx
6 5 exbii yy=w|wxyzzyzx
7 3 6 mpbir yy=w|wx
8 7 issetri w|wxV
9 1 8 eqeltri 𝒫xV