Metamath Proof Explorer


Theorem vr1cl

Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypotheses vr1cl.x X=var1R
vr1cl.p P=Poly1R
vr1cl.b B=BaseP
Assertion vr1cl RRingXB

Proof

Step Hyp Ref Expression
1 vr1cl.x X=var1R
2 vr1cl.p P=Poly1R
3 vr1cl.b B=BaseP
4 1 vr1val X=1𝑜mVarR
5 eqid 1𝑜mPolyR=1𝑜mPolyR
6 eqid 1𝑜mVarR=1𝑜mVarR
7 eqid PwSer1R=PwSer1R
8 2 7 3 ply1bas B=Base1𝑜mPolyR
9 1onn 1𝑜ω
10 9 a1i RRing1𝑜ω
11 id RRingRRing
12 0lt1o 1𝑜
13 12 a1i RRing1𝑜
14 5 6 8 10 11 13 mvrcl RRing1𝑜mVarRB
15 4 14 eqeltrid RRingXB