Metamath Proof Explorer


Theorem vtxdusgrfvedg

Description: The value of the vertex degree function for a simple graph. (Contributed by AV, 12-Dec-2020)

Ref Expression
Hypotheses vtxdushgrfvedg.v V=VtxG
vtxdushgrfvedg.e E=EdgG
vtxdushgrfvedg.d D=VtxDegG
Assertion vtxdusgrfvedg GUSGraphUVDU=eE|Ue

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V=VtxG
2 vtxdushgrfvedg.e E=EdgG
3 vtxdushgrfvedg.d D=VtxDegG
4 eqid iEdgG=iEdgG
5 eqid domiEdgG=domiEdgG
6 1 4 5 3 vtxdusgrval GUSGraphUVDU=idomiEdgG|UiEdgGi
7 usgruspgr GUSGraphGUSHGraph
8 uspgrushgr GUSHGraphGUSHGraph
9 7 8 syl GUSGraphGUSHGraph
10 1 2 vtxdushgrfvedglem GUSHGraphUVidomiEdgG|UiEdgGi=eE|Ue
11 9 10 sylan GUSGraphUVidomiEdgG|UiEdgGi=eE|Ue
12 6 11 eqtrd GUSGraphUVDU=eE|Ue