Metamath Proof Explorer


Theorem wecmpep

Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994)

Ref Expression
Assertion wecmpep EWeAxAyAxyx=yyx

Proof

Step Hyp Ref Expression
1 weso EWeAEOrA
2 solin EOrAxAyAxEyx=yyEx
3 epel xEyxy
4 biid x=yx=y
5 epel yExyx
6 3 4 5 3orbi123i xEyx=yyExxyx=yyx
7 2 6 sylib EOrAxAyAxyx=yyx
8 1 7 sylan EWeAxAyAxyx=yyx